metabelian, supersoluble, monomial, A-group
Aliases: C53⋊7C4, C52⋊8F5, C52⋊7Dic5, C5⋊D5.3D5, C5⋊2(D5.D5), C5⋊3(C5⋊F5), (C5×C5⋊D5).4C2, SmallGroup(500,47)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C52 — C53 — C5×C5⋊D5 — C53⋊7C4 |
C53 — C53⋊7C4 |
Generators and relations for C53⋊7C4
G = < a,b,c,d | a5=b5=c5=d4=1, ab=ba, ac=ca, dad-1=a-1, bc=cb, dbd-1=b3, dcd-1=c3 >
Subgroups: 512 in 60 conjugacy classes, 19 normal (7 characteristic)
C1, C2, C4, C5, C5, C5, D5, C10, Dic5, F5, C52, C52, C52, C5×D5, C5⋊D5, D5.D5, C5⋊F5, C53, C5×C5⋊D5, C53⋊7C4
Quotients: C1, C2, C4, D5, Dic5, F5, D5.D5, C5⋊F5, C53⋊7C4
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)
(1 41 28 32 36)(2 42 29 33 37)(3 43 30 34 38)(4 44 26 35 39)(5 45 27 31 40)(6 23 15 96 19)(7 24 11 97 20)(8 25 12 98 16)(9 21 13 99 17)(10 22 14 100 18)(46 55 59 63 67)(47 51 60 64 68)(48 52 56 65 69)(49 53 57 61 70)(50 54 58 62 66)(71 88 80 92 84)(72 89 76 93 85)(73 90 77 94 81)(74 86 78 95 82)(75 87 79 91 83)
(1 42 30 35 40)(2 43 26 31 36)(3 44 27 32 37)(4 45 28 33 38)(5 41 29 34 39)(6 25 14 97 17)(7 21 15 98 18)(8 22 11 99 19)(9 23 12 100 20)(10 24 13 96 16)(46 54 57 65 68)(47 55 58 61 69)(48 51 59 62 70)(49 52 60 63 66)(50 53 56 64 67)(71 86 76 91 81)(72 87 77 92 82)(73 88 78 93 83)(74 89 79 94 84)(75 90 80 95 85)
(1 23 53 80)(2 22 54 79)(3 21 55 78)(4 25 51 77)(5 24 52 76)(6 70 92 28)(7 69 93 27)(8 68 94 26)(9 67 95 30)(10 66 91 29)(11 65 89 31)(12 64 90 35)(13 63 86 34)(14 62 87 33)(15 61 88 32)(16 60 81 39)(17 59 82 38)(18 58 83 37)(19 57 84 36)(20 56 85 40)(41 96 49 71)(42 100 50 75)(43 99 46 74)(44 98 47 73)(45 97 48 72)
G:=sub<Sym(100)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100), (1,41,28,32,36)(2,42,29,33,37)(3,43,30,34,38)(4,44,26,35,39)(5,45,27,31,40)(6,23,15,96,19)(7,24,11,97,20)(8,25,12,98,16)(9,21,13,99,17)(10,22,14,100,18)(46,55,59,63,67)(47,51,60,64,68)(48,52,56,65,69)(49,53,57,61,70)(50,54,58,62,66)(71,88,80,92,84)(72,89,76,93,85)(73,90,77,94,81)(74,86,78,95,82)(75,87,79,91,83), (1,42,30,35,40)(2,43,26,31,36)(3,44,27,32,37)(4,45,28,33,38)(5,41,29,34,39)(6,25,14,97,17)(7,21,15,98,18)(8,22,11,99,19)(9,23,12,100,20)(10,24,13,96,16)(46,54,57,65,68)(47,55,58,61,69)(48,51,59,62,70)(49,52,60,63,66)(50,53,56,64,67)(71,86,76,91,81)(72,87,77,92,82)(73,88,78,93,83)(74,89,79,94,84)(75,90,80,95,85), (1,23,53,80)(2,22,54,79)(3,21,55,78)(4,25,51,77)(5,24,52,76)(6,70,92,28)(7,69,93,27)(8,68,94,26)(9,67,95,30)(10,66,91,29)(11,65,89,31)(12,64,90,35)(13,63,86,34)(14,62,87,33)(15,61,88,32)(16,60,81,39)(17,59,82,38)(18,58,83,37)(19,57,84,36)(20,56,85,40)(41,96,49,71)(42,100,50,75)(43,99,46,74)(44,98,47,73)(45,97,48,72)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100), (1,41,28,32,36)(2,42,29,33,37)(3,43,30,34,38)(4,44,26,35,39)(5,45,27,31,40)(6,23,15,96,19)(7,24,11,97,20)(8,25,12,98,16)(9,21,13,99,17)(10,22,14,100,18)(46,55,59,63,67)(47,51,60,64,68)(48,52,56,65,69)(49,53,57,61,70)(50,54,58,62,66)(71,88,80,92,84)(72,89,76,93,85)(73,90,77,94,81)(74,86,78,95,82)(75,87,79,91,83), (1,42,30,35,40)(2,43,26,31,36)(3,44,27,32,37)(4,45,28,33,38)(5,41,29,34,39)(6,25,14,97,17)(7,21,15,98,18)(8,22,11,99,19)(9,23,12,100,20)(10,24,13,96,16)(46,54,57,65,68)(47,55,58,61,69)(48,51,59,62,70)(49,52,60,63,66)(50,53,56,64,67)(71,86,76,91,81)(72,87,77,92,82)(73,88,78,93,83)(74,89,79,94,84)(75,90,80,95,85), (1,23,53,80)(2,22,54,79)(3,21,55,78)(4,25,51,77)(5,24,52,76)(6,70,92,28)(7,69,93,27)(8,68,94,26)(9,67,95,30)(10,66,91,29)(11,65,89,31)(12,64,90,35)(13,63,86,34)(14,62,87,33)(15,61,88,32)(16,60,81,39)(17,59,82,38)(18,58,83,37)(19,57,84,36)(20,56,85,40)(41,96,49,71)(42,100,50,75)(43,99,46,74)(44,98,47,73)(45,97,48,72) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100)], [(1,41,28,32,36),(2,42,29,33,37),(3,43,30,34,38),(4,44,26,35,39),(5,45,27,31,40),(6,23,15,96,19),(7,24,11,97,20),(8,25,12,98,16),(9,21,13,99,17),(10,22,14,100,18),(46,55,59,63,67),(47,51,60,64,68),(48,52,56,65,69),(49,53,57,61,70),(50,54,58,62,66),(71,88,80,92,84),(72,89,76,93,85),(73,90,77,94,81),(74,86,78,95,82),(75,87,79,91,83)], [(1,42,30,35,40),(2,43,26,31,36),(3,44,27,32,37),(4,45,28,33,38),(5,41,29,34,39),(6,25,14,97,17),(7,21,15,98,18),(8,22,11,99,19),(9,23,12,100,20),(10,24,13,96,16),(46,54,57,65,68),(47,55,58,61,69),(48,51,59,62,70),(49,52,60,63,66),(50,53,56,64,67),(71,86,76,91,81),(72,87,77,92,82),(73,88,78,93,83),(74,89,79,94,84),(75,90,80,95,85)], [(1,23,53,80),(2,22,54,79),(3,21,55,78),(4,25,51,77),(5,24,52,76),(6,70,92,28),(7,69,93,27),(8,68,94,26),(9,67,95,30),(10,66,91,29),(11,65,89,31),(12,64,90,35),(13,63,86,34),(14,62,87,33),(15,61,88,32),(16,60,81,39),(17,59,82,38),(18,58,83,37),(19,57,84,36),(20,56,85,40),(41,96,49,71),(42,100,50,75),(43,99,46,74),(44,98,47,73),(45,97,48,72)]])
38 conjugacy classes
class | 1 | 2 | 4A | 4B | 5A | 5B | 5C | ··· | 5AF | 10A | 10B |
order | 1 | 2 | 4 | 4 | 5 | 5 | 5 | ··· | 5 | 10 | 10 |
size | 1 | 25 | 125 | 125 | 2 | 2 | 4 | ··· | 4 | 50 | 50 |
38 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | - | + | ||
image | C1 | C2 | C4 | D5 | Dic5 | F5 | D5.D5 |
kernel | C53⋊7C4 | C5×C5⋊D5 | C53 | C5⋊D5 | C52 | C52 | C5 |
# reps | 1 | 1 | 2 | 2 | 2 | 6 | 24 |
Matrix representation of C53⋊7C4 ►in GL8(𝔽41)
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 37 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 37 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 37 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 37 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 37 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 37 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
G:=sub<GL(8,GF(41))| [10,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,37,0,0,0,0,0,0,0,0,37,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16],[18,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,37,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,37,0,0,0,0,0,0,0,0,10],[16,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,37,0,0,0,0,0,0,0,0,37,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,18],[0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0] >;
C53⋊7C4 in GAP, Magma, Sage, TeX
C_5^3\rtimes_7C_4
% in TeX
G:=Group("C5^3:7C4");
// GroupNames label
G:=SmallGroup(500,47);
// by ID
G=gap.SmallGroup(500,47);
# by ID
G:=PCGroup([5,-2,-2,-5,-5,-5,10,242,803,808,5004,5009]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^5=c^5=d^4=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=b^3,d*c*d^-1=c^3>;
// generators/relations